GNSS Features		Communications	
Channels	1698		
GPS	L1, L1C, L2C, L2P, L5		
GLONASS	G1, G2, G3	I/O Port	
BDS	BDS-2: B1I, B2I, B3I BDS-3: B1I, B3I, B1C, B2a, B2b*		
GALILEO	E1, E5A, E5B, E6C, AltBOC [*]	Internal UHF	
SBAS	L1*	Frequency range	
IRNSS	L5*	Communication	
QZSS	L1, L2C, L5*	protocol	
MSS L-Band*	Reserve	Communication	
Positioning output	1Hz~20Hz	range	
rate		Cellular mobile	
Initialization time	< 10s	network	
Initialization	× 00,00%	Diversette	
reliability	>99.99%	Bluetooth	
Positioning Precision		NFC	
Code Differential	Horizontal: 0.25 m + 1 ppm RMS	Communication	
Positioning	Vertical: 0.50 m + 1 ppm RMS	Modem	
GNSS Static	Horizontal: 2.5 mm + 0.5 ppm RMS	Data Storage/Tran	
GINSS Static	Vertical: 5 mm + 0.5 ppm RMS		
Static (long	Horizontal: 2.5 mm + 0.1 ppm RMS		
observation)	Vertical: 3 mm + 0.4 ppm RMS	Storage	
Panid Static	Horizontal: 2.5 mm + 0.5 ppm RMS		
Rapid Static	Vertical: 5 mm + 0.5 ppm RMS		
РРК	Horizontal: 3 mm + 1 ppm RMS		
PPK	Vertical: 5 mm + 1 ppm RMS	Data Transmission	
RTK(UHF)	Horizontal: 8 mm + 1 ppm RMS		
KIK(OIII)	Vertical: 15 mm + 1 ppm RMS		
	Horizontal: 8 mm + 0.5 ppm RMS		
RTK(NTRIP)	Vertical: 15 mm + 0.5 ppm RMS		
SBAS positioning	Typically<5m 3DRMS		
RTK initialization	2~8s	Data Format	
time	2 03		
IMU tilt angle	0°~60°		
Hardware performance			
Dimension	134mm(φ)×79.1mm(H)	Sensors	
Weight	860g (battery included)	IMU	
Material	Magnesium aluminum alloy shell		
Operating		Camera	
temperature	-25°C~+65°C		
Storage			
temperature	-35℃~+80℃	Electronic bubble	
Humidity	100% Non-condensing		
	IP68 standard, protected from long time		
	immersion to depth of 1m		
of	IP68 standard, fully protected against blowing	Thermometer	
	dust		
Shock/Vibration	Withstand 2 meters pole drop onto the cement	User Interaction	
Power supply	ground naturally 6-28V DC, overvoltage protection	Operating system Buttons	
Patton	Inbuilt 6800mAh rechargeable Lithium-ion	Indicators	
Battery	battery	maicators	
	Single battery: 16h (static mode)	Web interaction	
Battery life	10h (internal UHF base mode)		
	12h (rover mode)		
		Voice guidance	

FIELD SOFTWARE

e for future upgrade

K∰

Remarks: Measurement accuracy and operation range might vary due to atmospheric conditions, signal multipath, obstructions, observation time, lemperature, signal geometry and number of tracked satellites. Specifications subject to change without prior notice (€F©

D

moacm	002122 0/8/11010110
Data Storage/Tran	smission
	16GB SSD internal storage
	Automatic cycling storage
Storage	Support external USB storage (OTG)
	The customizable sample interval is up to
	20Hz
	Plug and play mode of USB data
Data Transmission	transmission
	Supports FTP/HTTP data download
	Static data format: STH, Rinex2.01,
	Rinex3.02 and etc.
	Differential data format: RTCM 2.1, RTCM
	2.3, RTCM 3.0, RTCM 3.1, RTCM 3.2
Data Format	GPS output data format: NMEA 0183, PJK
Data i Offiat	plane coordinate, Binary code, Trimble
	GSOF
	Network model support: VRS, FKP, MAC,
	fully support NTRIP protocol
Sensors	
	D. The tail ball and the settle settle settle s
IMU	Built-in IMU module, calibration-free
	Visual positioning camera: 8MP (can be
Camera	used in AR stakeout)
	AR stakeout camera: 2MP
	Controller software can display electronic
Electronic bubble	bubble, checking leveling status of the
	carbon pole in real-time
	Built-in thermometer sensor, adopting
Thermometer	intelligent temperature control technology,
mennometer	monitoring and adjusting the receiver
	temperature
User Interaction	
Operating system	Linux
Buttons	Single button
Indicators	Satellites, data and power indicators
	With access to Web UI via WiFi or USB
Web interaction	connection, users can monitor the receiver
	status and change the configurations
Vaice guidence	Chinese/English/Korean/Spanish/
Voice guidance	Portuguese/Russian/Turkish/French/Italian
Cocondoru	Provides secondary development package,
Secondary	and opens the OpenSIC observation data
development	format and interaction interface definition
	The powerful cloud platform provides
Cloud service	online services like remote management,
	firmware updates, online registers, etc.

5-PIN LEMO interface (external power port

Type-C interface (charge+OTG+Ethernet)

Farlink, Trimtalk, SOUTH, HUACE, Hi-target,

Bluetooth 3.0/4.1 standard, Bluetooth 2.1 +

Typically 8km with Farlink protocol

+ RS232)

410-470MHz

Satel

4G

EDR

Support

802.11 b/g/n standard

UHF antenna interface

SIM card slot (Micro SIM) Radio receiver and transmitter

K@LIDA **Professional's Choice**

See Better, Work Better!

- > 3D Modeling
- > 3 Ways of Processing

➢ 4th Generation IMU

Farlink 2.0

GUANGDONG KOLIDA INSTRUMENT CO., LTD. Add: 7/F, South Geo-information Industrial Park, No.39 Si Cheng Road, Tian He IBD, Guangzhou 510663, China Tel: +86-20-22139033 Fax: +86-20-22139032 Professional's Choice

Email: export@kolidainstrument.com market@kolidainstrument.com http://www.kolidainstrument.com

K LIDA K50 **Professional's Choice** Beyond the Productivity of Traditional RTK

More Efficient than Traditional RTK

K50 can process a set of photos or a video, acquiring coordinates for hundreds of points within minutes. It boasts a wider working range and fewer blind spots through remote measurements with the camera. Locations that were once challenging, such as spaces under rooftops and areas with obstacles, are now easily measurable.

More Versatile than Traditional RTK

Utilizing visual positioning, surveyors can collect field data in a short time. The data can preserve safely in the device and is reusable at any time. These capabilities are particularly well-suited for distinctive GNSS measurement tasks, including documenting accident scenes and excavation sites for urban public facilities.

More User-friendly than Traditional RTK

K50 visual positioning enables surveyors to measure points remotely, reaching distances of up to 10 meters or more (under ideal conditions), thereby eliminating the necessity to physically approach each point. This approach decreases the physical effort required during fieldwork.

Safer than Traditional RTK

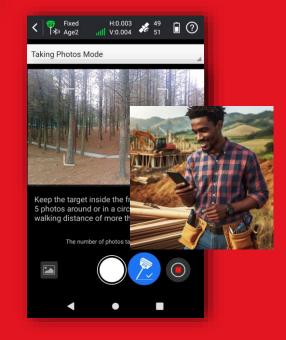
Leveraging visual positioning aids users in minimizing risks during surveys conducted in hazardous areas, such as busy roads and lakes, ensuring the safety of surveyors. Adopting a secure working approach is not only a personal need but also essential for the well-being of your family.

Three Approaches to Process

--Precision Crafted for Your Work Specifications

Designed for Field Surveying

--Data Controller Offline Processing


Without internet coverage, surveyors can perform offline image data processing using the data controller app. This mode offers the fastest processing speed, saving time on data uploads and delivering 4cm accuracy results within 30 seconds.

Designed for Urban Surveying

--Cloud Server Online Processing

Surveyors, with a strong internet connection in urban areas, can process image data online using network and cloud servers. INNO8 achieves 2cm accurate coordinate data for image measurements within minutes, balancing precision and speed.

Designed for Users with Tight Fieldwork Schedules

--Desktop Software Processing

For time-sensitive fieldwork, surveyors can opt not to process data on-site. Instead, they can use desktop post-processing software back in the office for enhanced measurement and calculation functionalities. This mode allows outdoor focus on data collection, maximizing point acquisition speed and time efficiency.

3D Modeling—Broadening Your Working Power

Eyes on Now, Be Prepared for Future

K50 enables single-user 3D modeling, on the models visually displaying geographic information like coordinates, areas, and volumes. It supports transforming model data into different formats and customize coordinate parameters for diverse applications.

Ensuring a Smooth Journey for Your Success

K50 harnesses KOLIDA's 3D modeling tech, seamlessly integrating image measurements with UAV data, including DJI and other brands. Overcoming data gaps in UAV surveys, K50 supplements incomplete models by collecting ground image data, improving overall survey outcomes.

Work in Your Preferred Way

Surveyors can import K50 data into KOLIDA UAV and third-party modeling software for 3D modeling. Future updates to KGO (PC version) and KSurvey (Android App) will also include 3D modeling functions, allowing users to select the most suitable software for optimal work efficiency based on scenario and task requirements.

0.1mm

Left and Right Camera Deviation

The modular design ensures that the assembly flatness of the camera is within 0.15mm, with a left and right deviation of within 0.1mm, preventing camera misalignment and ensuring the accuracy of visual positioning.

Polycarbonate Top Cover

The top cover and ring utilize integral

molding technology, ensuring strong

5 Years

Impact Resistance

110N

KOLIDA

The anti-collision ring utilizes TPU material, effectively cushioning against an impact force of 110N (the impact force from a 2-meter drop is approximately 30N). Therefore, it safeguards your K50 from a 2-meter pole drop or other unexpected impacts. integrity and resistance to damage. The polycarbonate material is corrosion-resistant, protecting internal precision components. It mitigates the impact of extreme environments on the mainframe and can be used in natural settings for over 5 years.

10 Years

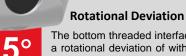
Protective Layer

The polyethylene coating can reach $100-300\mu$ m, preventing aging and rust of the shell, providing scratch resistance, and offering effective protection for over ten years.

The internal heating components are closely fitted to the shell, and passive air cooling is utilized for heat dissipation. With a thermal conductivity of 65W/(m·K), it can achieve heat dissipation without the need for additional cooling components, ensuring optimal operation under different temperature conditions.

KOLIDA

Thermal Conductivity



Micropore Diameter of the Waterproof Membrane

0.1µm

The diameter of drizzle $(400\mu m)$ is 40-4000 times that of the E-PTFE membrane. Therefore, it can prevent rainwater from passing through the protective film.

The design with a contact angle of 135.6° prevents liquid water from wetting and capillary infiltration. At the same time, it allows for breathability, ensuring the normal operation of internal components of the instrument.

The bottom threaded interface maintains a rotational deviation of within 5° for the pole, allowing users to precisely install the pole with ease. This convenient installation process saves time for the fieldwork.

